Measurement of the salt-dependent stabilization of partially open DNA by Escherichia coli SSB protein
نویسندگان
چکیده
The rezipping force of two complementary DNA strands under tension has been measured in the presence of Escherichia coli single-stranded-binding proteins under salt conditions ranging from 10- to 400 mM NaCl. The effectiveness of the binding protein in preventing rezipping is strongly dependent on salt concentration and compared with the salt dependence in the absence of the protein. At concentrations less than 50 mM NaCl, the protein prevents complete rezipping of lambda-phage on the 2-s timescale of the experiment, when the ssDNA is under tensions as low as 3.5 +/- 1 pN. For salt concentrations greater than 200 mM NaCl, the protein inhibits rezipping but cannot block rezipping when the tension is reduced below 6 +/- 1.8 pN. This change in effectiveness as a function of salt concentration may correspond to salt-dependent changes in binding modes that were previously observed in bulk assays.
منابع مشابه
Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein
RecO is a recombination mediator protein (RMP) important for homologous recombination, replication repair and DNA annealing in bacteria. In all pathways, the single-stranded (ss) DNA binding protein, SSB, plays an inhibitory role by protecting ssDNA from annealing and recombinase binding. Conversely, SSB may stimulate each reaction through direct interaction with RecO. We present a crystal stru...
متن کاملEscherichia coli single-stranded DNA-binding protein: nanoESI-MS studies of salt-modulated subunit exchange and DNA binding transactions.
Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the ...
متن کاملEffects of monovalent anions on a temperature-dependent heat capacity change for Escherichia coli SSB tetramer binding to single-stranded DNA.
We have previously shown that the linkage of temperature-dependent protonation and DNA base unstacking equilibria contribute significantly to both the negative enthalpy change (DeltaH(obs)) and the negative heat capacity change (DeltaC(p,obs)) for Escherichia coli SSB homotetramer binding to single-stranded (ss) DNA. Using isothermal titration calorimetry we have now examined DeltaH(obs) over a...
متن کاملIntrinsically disordered C-terminal tails of E. coli single-stranded DNA binding protein regulate cooperative binding to single-stranded DNA.
The homotetrameric Escherichia coli single-stranded DNA binding protein (SSB) plays a central role in DNA replication, repair and recombination. E. coli SSB can bind to long single-stranded DNA (ssDNA) in multiple binding modes using all four subunits [(SSB)65 mode] or only two subunits [(SSB)35 binding mode], with the binding mode preference regulated by salt concentration and SSB binding dens...
متن کاملCalorimetric studies of E. coli SSB protein-single-stranded DNA interactions. Effects of monovalent salts on binding enthalpy.
Isothermal titration calorimetry (ITC) was used to examine the effects of monovalent salts (NaCl, NaBr, NaF and ChCl) on the binding enthalpy (DeltaHobs) for E. coli SSB tetramer binding to the single-stranded oligodeoxythymidylates, dT(pT)69 and dT(pT)34 over a wide range of salt concentrations from 10 mM to 2.0 M (25 degrees C, pH 8.1), and when possible, the binding free energy and entropy (...
متن کامل